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PREFACE 

The purpose of this paper is to describe the results of 

some rather extensive computer simulations of a stochastic 

attrition process which is analogous to the classical "square- 

law" Lanchester differential equations of combat.  We shall 

consider various measurements of force equality and inequality, 
scaling and iteration properties of certain expectations, and 

several different rules for combat termination.  Many of the 

results obtained are in some sense confirmations of heuristic, 

intuitive beliefs about the attrition process under study 

while others are, to some extent, rather surprising and 

counterintuitive. 



Chapter I 

THE MATHEMATICAL MODEL 

The first quantitative description of combat appears to 

be due to F. W. Lanchester (Reference [6]), a British engineer 

who suggested that it is the nature of modern warfare that the 

instantaneous casualty rate on each side be proportional to the 

current numerical strength of the opposition, provided that the 

combat situation be such that the numerically superior side is 

able to bring its full superiority to bear on the opposition. 

Analytically, the model proposed by Lanchester is 

b'(t) = -c-jKt)  and  r'(t) = -c2b(t) ,     (1) 

where b(t) and r(t) are the numbers of surviving Blue and Red 

combatants, respectively, at time t after the combat begins; 

and c-. and cp are positive constants, which need not be equal. 

Each side is homogeneous; and, in order that Equations (1) 

make sense, the functions b and r must be allowed to assume 

arbitrary nonnegative values.  The solution to these equations 

is given by 

b(t) = b(0) cosh Xt - ar(0) sinh Xt 

r(t) = r(0) cosh Xt - a"1b(0) sinh Xt ,      (2) 

1/2 1/2 where X = (c^cj '  and a = (c^c^   .  X is a measure of the 

intensity of the engagement; a, of the relative effectiveness 

of individual combatants.  Let us define 

T = inf{t: b(t)=0 or r(t)=0} ; 

as the time at which one side or the other is annihilated (the 



Solutions to Equations (1) are of interest only until T; for 

after T one function or the other will begin to increase— 

which has no meaning in the physical situation under study). 

Then we have the following result: 

PROPOSITION.  We have 

i) T « - and lim b(t) = lim r(t) = 0 
t-*00       t-*-°° 

or 

ii) x < °°, b(x) = 0, and r(x) > 0 

or 

iii) T < «>, b(x) > 0, and r(x) = 0 

according as c,r(0)  = cob(0) , c.r(0)  > cob(0)  or c.r(0)
2 < 

pi c. 1 c. 1 
Cpb(0) , respectively. 

2 2 Thus the quantities c,r(0)  and c?b(0)  are important 

measures of relative force strengths.  We shall see below that 

the same is true (in a suitably generalized sense) for the 

stochastic attrition process analogous to Equations (1). 

That process is defined and characterized in Reference [5]; 

for completeness, we include a brief description here.  The 

assumptions underlying the stochastic homogeneous square-law 

Lanchester attrition process are the following: 

(1) All weapons (i.e., combatants) on each side are 
identical. 

(2) Times between engagements initiated by a surviving 
Blue weapon are independent and identically expo- 
nentially distributed, with expectation 1/e, • 

(3) When such an engagement occurs, it leads to the de- 
struction of exactly one Red weapon with probability 
p  or destruction of no Red weapons (with probability 

1 - Ph), independent of the past history of the 

process.  All engagements occur instantaneously. 



(*0 Red weapons satisfy Assumptions (2) and (3), with 
parameters e and p . 

(5) The engagement and kill processes of all weapons are, 
conditioned on their survival, independent. 

In Reference [5] it is shown that one can construct a proba- 

bility space (fl,^,P) and on it a stochastic process ((B, ,R, ))   , 
t   L   U > U 

the interpretation of which is that B is the number of Blue 

weapons surviving at time t and R. is the corresponding number 

of Red weapons, such that the following characterization holds. 

THEOREM.  Subject to Assumptions (l)-(5) above, the stochas- 

tic process ((Bt>
T
t))t>0 

is a regular Markov process with state 

space E ■ N x N (where~N = {0,1,2,...,}), jump function X given 

by 

X(i,j) = iebpb + jerpr , (3) 

transition kernel P given by 

P((l.J)l(l.J-l» = ie oblbie P ' ebpb  J rpr 

P((i,J);(i-U)) - le^Jv),, I 

and infinitesimal generator Q given by 

Q((i,j);(i,j-D) = iebpb 

Q((i,j);(i,J)) = "(iebpb + Je^) 

Q((i,j);(i-l,j)) = jerpr . (10 

These expressions apply only to states (i,j) such that 1 > 0 

and j > 0.  If i = 0 or j = 0, the state (i,j) is absorbing. 

The reader is referred to References [2] and [3] for details 

concerning regular Markov processes; for purposes of computer 

simulation, we note the following characterization:  When the 

process f(B,,R,)) enters a state (i,J), it remains there an ex- 
t  t 

ponentially distributed length of time, which has expectation 

A(iJ)"1 and is independent of the past history of the process. 



It then Jumps to a new state according to the distribution 
p((i>j);*) independent of past history and of the length of the 

sojourn in (i,j).  We denote by P( »^ the probability law of 

the Markov process ((Bt,Rt)) subject to the initial conditions 

BQ = i   and   RQ = j ; 

and, by E  ,J [•] the corresponding expectation. 

The research reported here involved Monte Carlo simulations 

of the process described above; we now outline the procedures 
used: 

• The program requires as inputs the initial numbers of 
weapons on each side, the engagement rates e, ,e , and 
kill probabilities Pb>Pr. 

r 

• The Monte Carlo simulations are performed by using only 
random numbers that are uniformly distributed on [0,1], 
on the basis of the independence observation above. 
The program simulates and records times of changes of 
state of the process and states entered.  For example, 
suppose that the process enters state (i,j) at time t. 
Then the time of the next transition is 

+ '  - 4-   log x 

where x is a realization of a random variable that is 
uniformly distributed on [0,1].  Here we use the well- 
known fact that, if X is a random variable uniformly 
distributed on [0,1], then (-X"1 log X) has an exponen- 
tial distribution with expectation A"-1.  To determine 
the state to be entered at time t', one takes a second 
realization x' from the uniform distribution on [0,1]. 
The next state is (i,j-l) if x' < P((i, j), (i,j-D) and 
(i-l,j) otherwise. 

• Various criteria for termination of each realization 
are available—namely, annihilation of one side, ter- 
mination at a fixed time, and termination when one side 
reaches a prescribed fraction of its original strength. 

• Each simulation run produces 50 or 100 realizations 
of the stochastic process.  Outputs available include 
expected numbers and fractions of survivors (and 
standard derivations thereof), the probability that 
each side wins, and the expected duration. 

The computer programs are written in BASIC and run on a 

PDP-11 time-sharing computer. 



Chapter II 

EXPECTED NUMBERS OF SURVIVORS 

To begin, we investigated expected numbers of survivors at 

ixed times, for different combinations of initial conditions. 

In the notation of Chapter I, we are here studying the functions 

and 

tV 

E(iJ)[Rt] 

for various choices of i-Bn, j=R~, e, , e , p^, and p .  Some 
u    0  D  r  b      r 

representative results appear in Table 1. 

The main reason for using simulation to explore properties 

of these expectations is their analytical intractability.  One 

can define the transition function (P ) of the process—namely, 

Pt((i,j);a) = P(i'J){(Bt,Rt)=a},      a 6 E ; 

nd it is known that, for each t, 

Pt = e
tQ , (5) 

iere Q is the infinitesimal generator of the process ((Bt'Rt^t>0 

•om Equation (5), it follows that 

;(i>J)[B ] . I      }  kP  ((i,j);(k,*)) 
z k=0 £=0   z 

= 1  1 * £ ;£ Qn((i,J);(k,M) . 
k=0 Z=0       n=0 ] 



Table 1.  EXPECTED NUMBERS OF SURVIVORS 

i j eb er Pb pr t E(iJ)[Bt] E(iJ)[Rt] 

200 200 0.1 0.1 0.5 0.5 0.625 

1.25 

2.5 

5.0 

194.40 

187.28 

176.34 

155.86 

193.78 

187.56 

176.80 

155.68 

200 200 0.5 0.5 0.5 0.5 0.5 
1.0 

2.0 

4.0 

176.00 
155.62 

122.10 
73.04 

176.12 
156.44 

121.16 
73.54 

150 100 0.1 0.225 0.5 0.5 1.25 

2.5 

5.0 

136.38 

122.54 

103.80 

90.98 

82.88 

63.46 

200 200 0.4 0.5 0.5 0.5 1.25 
2.5 
5.0 

145.60 
101.76 
34.84 

155.98 
127.22 
94.02 

We are not able, however, to compute this explicitly.  It can 

also be shown that the functions 

(i,j,t) - E(1J)[Bt] and (i,J,t) - E(iJ)[Rt] 

satisfy convolution-type equations known as Markov renewal 

equations (cf. Reference [*0), whose solution is obtainable 

abstractly in terms of a Markov renewal kernel but which we 

are also unable to obtain explicitly.  The difficulty here is 

essentially the same as that in performing the matrix expo- 

nentiation in Equation (5).  Hence, we are using simultation 

to study functions that we have not been able to treat 

adequately in an analytical matter. 

The results (in summarized form in Table 1) are not un- 

expected.  Engagements are intense at the beginning and less 

6 



so as they progress.  For forces with all parameters equal, we 

nearly have 

E(i,J)[Bt] = E(1'J)[Rt] (6) 

for all t.  On theoretical grounds, we would expect that, if 

i = j, e = e , and p = p , then Equation (6) should hold; it 

can be shown that it does.  Over fairly short time intervals 

(as, e.g., in the first set of results), the expectations appear 

nearly linear—as shown in Figure 1. 

7-15-75-1 

I = j = 200 
eb = er = 0.1 

pb = pr = 0.5 

Figure 1.  EXPECTED NUMBERS OF SURVIVORS 
(Engagement Rate = 0.1) 

In fact, it is surprising that the functions are, in this 

case, so near to being linear over such a length of time.  For 



the second set of data, there is less (but still a rather sur- 

prising amount) of linearity—as can be seen in Figure 2. 

e = e = 0.5 
b   r 

Pb ■ pr = 0.5 

0.0   0.5 2.0 4.0 

Figure 2.  EXPECTED NUMBERS OF SURVIVORS (Engagement Rate = 0.5) 

For the situation of Figure 1, we have computed the following 

approximation: 

E[B.] - 200(1 - 0.0M2t) . (7) 

If in the classical Lanchester square-law solutions (2) we 

make the substitutions 

b(0) = r(0) = 200 

c1 = c2 = 0.05 

(i.e., cp = e,p and c1 = e p , which (cf. Reference [5]) is 

the proper analogy and make the one-term power series expansions 

8 



cosh Xt « 1 

sinh Xt = Xt , 

we obtain 

b(t) ~ 200(1 - 0.05t) . (8) 

The similarity between Equations (7) and (8) is suggestive and 

intriguing but not, the reader is warned, indicative that 

Equations (2) are good approximations to the behavior of E[B ] 

for large t.  Indeed, E[Bt] and E[R ] do not go to zero in the 

limit as t * °°, when all force parameters are equal.  That 

Equations (7) and (8) are similar is a reflection of the effect 

of similar approximations at small times.  This similarity, 

incidentally, further strengthens the argument that the stochas- 

tic attrition process under study is the appropriate analogue of 
Equations (1). 

The third set of data in Table 1 is more meaningful once 

fractions of survivors are also considered—as we do in Table 2. 

Table 2.  EXPECTED FRACTION OF SURVIVORS 

E(i'j)[Bt] E(i.j)r!fci E(i'j)[Rt] 

1.25 

2.5 

5.0 

136.38 

122.54 

103.80 

0.909 

0.817 

0.692 

90.98 

82.88 

63.46 

0.910 

0.829 

0.685 

It  is  to  be noted  that  in this  case  the  initial  conditions 

(9) 

ij» eb,er* pb,pr satisfy tne relation 

l2ebpb = J2erpr ' 

[i.e., the classical square-law force-equality condition of 

the Proposition].  In this case, the simulations suggest the 

following: 



CONJECTURE.  Suppose that Equation (9) is satisfied.  Then 

for all t, 

B.    ,, JN R. 
E(1J)[^] - E(i'J)[^] . (10) 

-V      LRo 
If true, Equation (10) would be a significant and useful 

property of the stochastic attrition process.  The .reader can 

easily verify that if in Equations (2) the force equality con- 
dition 

c1r(0)
2 = c2b(0)

2 

is satisfied, then 

b(t) m  r(t) 
bTÖT " rTÖT 

for all t.  Hence the Equation (10), if true, further strengthens 

the analogy between Equations (1) and the stochastic attrition 

process of the Theorem.  It is also possible that Equation (10) 

may not hold exactly, but only up to some correction involving 

the probability that one side or the other has been annihilated. 

As early as Reference [7], it was noted that certain quantities 

(e.g., moments) from stochastic Lanchester attrition processes 

satisfy equations similar to the analogous system of differential 

equations only for times such that the probability of annihilation 

of either side can be neglected.  Except for Markov renewal 

equations, however, no equation is known which such quantities 

satisfy exactly. 

The last set of data in Table 1 illustrates two forces that 

are unequal in capability, but initially equal numerically.  As 

expected, the numerical gap between them increases with time. 

A conclusion to be drawn from the amount of linearity 

appearing in Table 1 is that first-order discretized versions 

of Lanchester equations, such as are used in the IDAGAM I model, 

are not, for the casualty rates encountered, bad approximations 

to the corresponding differential equations. 

10 



Chapter III 

ITERATED CALCULATIONS 

Fixed time-step, deterministic simulation models (e.g., 

IDAGAM I—Reference [1]) perform daily calculations of attri- 

tion, using the result of one day's calculation as the input to 

that of the next day.  If the stochastic attrition process of 

the Theorem were used to calculate attrition in such a context, 

the numbers of survivors at the end of one day would be— 

assuming fixed initial conditions B =i and R0=j— 

b = E(i»J)[B1]   and   r = E(iJ)[R1] , 

respectively.  (We assume that the time scale is normalized so 

that a day is the time unit.)  An iterative scheme would then 

compute the numbers of survivors at the end of the second  day as 

b* = E l     L  [B1]   and   r* = E X 1  [R^        (11) 

(i.e., this scheme would compute the effect of one day's combat, 

applied to the expected  numbers of survivors from the first day), 

Even though b, and r. will not be integers in general, it is pos- 

sible to extend the stochastic .attrition process of the Theorem 

to have state space [0,®) x [0,«>).  In state (x,y), the sojourn 

is exponentially distributed with parameter 

A(x,y) = xebpb + yerPr ; 

and the next state entered is (x,max{y-l,0}), with probability 

xe,pb/X(x,y); otherwise, state (max{x-l,0},y) is entered. 

In this case, Equations (11) at least make sense; and the 

stochastic process can be used in iterative calculations.  But 

11 



the correct  expected numbers of survivors at the end of two 
days are 

b2 = E(1>j)[B2]   and   r2 = E
(1'J)[R2] ;     (12) 

and there is no assurance that 

b2 = b*   or   r^ = r* . 

Indeed, our conjecture was that substantial errors would be in- 

curred by using the iterative calculation. 

This conjecture, however, has turned out not to be true— 

as Table 3 clearly demonstrates. The numbers appearing in the 

table are expected numbers of survivors at the times shown. 

The agreement among various iterated calculations and the 

direct calculations is so uniformly good as to be startling— 

especially since our intuitive belief before performing this 

particular simulation was to the contrary (namely, that sub- 

stantial disagreement would result).  But no such discrepancy 

arose, at least in the cases above.  We were, however, able 

to discover rather large discrepancies at times of which the 

probability that one side or the other has been annihilated is 

not  negligible.  The nature of the difference between true and 

iterated expected numbers of survivors was that the iterated 

calculation overestimates the number of survivors—the reason 

being that, in the direct calculation, annihilation occurs with 

positive probability; but, in the iterated calculations, it does 

not occur (because of the shorter time intervals considered). 

We conclude, therefore, that if t is a time such that 

p(i,j){B 0 or R  0j m   0 (13) 
t      t 

(i.e., the probability in question is negligible), then it is 

permissible to use iterated calculations to approximate 

12 



Table 3.  ITERATED CALCULATIONS OF NUMBERS OF SURVIVORS 

B0 = R0 " 200; Bb * er * 0,1; Pb * Pr = °'5 

Iteration Interval 

0.625 1.25 2.5 5 

Time Blue Red Blue Red Blue Red Blue Red 
0 200 200 200 200 200 200 200 200 

.625 194.4 193.78 -- -- -- -- — — 

1.25 187.72 188.04 187.28 187.56 — — — -- 

1.875 181.78 182.36 - -- -- — -- -- 

2.5 175.84 177.12 175.8 176.14 176.34 176.8 -- -- 

3.125 170.58 171.34 -- — — -- -- -- 

3.75 165.74 166.14 164.76 165.02 -- -- -- -- 

4.375 160.02 160.84 — — -- — -- — 

5.0 154.82 156.08 154.94 154.68 155.28 155.84 155.86 155.68 

B0 = 150; 1 *0 ■ 100; e b = 0.1; ep = 0.225; pfe = pp = 0.5 

0 -- -- 150 100 150 100 150 100 

1.25 -- -- 136.38 90.98 — -- — -- 

2.5 -- -- 124.76 82.46 122.54 82.88 — — 

3.75 -- -- 114.24 74.98 -- -- — — 

5.0 — — 104.16 67.7 100.48 69.44 103.8 68.46 

Bo ■ Ro : ' 200; eb = 0.4; er = 0.5; Pb * Pr 
c 0-5 

0 -- -- 200 200 200 200 200 200 

1.25 -- -- 145.6 155.98 -- — — — 

2.5 -- -- 103.26 124.34 101.76 127.22 — -- 

3.75 -- -- 66.76 103.28 -- — -- -- 

5.0 -- — 36.28 89.9 34.74 93.64 34.84 94.02 

V *0 = 200; e b= er - 0.5; Pb= Pr = 0.5 

0. 5 1 2 4 

0 200 200 200 200 200 200 200 200 

.5 176 176.12 -- — -- -- -- — 

1.0 156.32 155.9 155.9 155.62 -- — -- — 

1.5 136.98 137.72 -- — -- — — -- 

2:0 120.92 121.84 120.26 122.6 122.1 121.16 — -- 

2.5 106.08 108.02 -- — — -- — -- 

3.0 93.3 95.84 92.24 96.54 -- — — -- 

3.5 81.58 84.48 -- -- — — — — 

4.0 71.56 74.38 72.14 71.62 75.4 72.46 73.04 73.54 

13 



E(1,J)[Bt] and E
(i,J)[Rt].  It follows from the definition of 

the stochastic attrition process ((Bt >
R
t)) t>o 

tnat> f°r i:>0 
and J>0, 

P(1,J){Bt-0 or Rt«0} = 0 ; (14) 

only for t=0; and the probability in question is positive 

(strictly) if t > 0, though possibly very small.  As a function 

of t, this probability is, further, continuous and nondecreasing. 

And it has the property that 

lim P(i'J){B =0 or R -0} = 1 ; 
t+oo z z 

but it also satisfies 

p(i,j) {Bt=0 or Rt=0} < 1 

for every finite t, even though with p^1»^ probability 1, 

T ■ inf{t: B =0 or R =0} < «» . t      t 

In order to determine when iterated calculations produce allow- 

able approximations, one then must study the distribution of T 

with respect to the various probability measures P^ ,J .  This 

we plan to do in the future. 

14 



Chapter IV 

FORCE EQUALITY AND INEQUALITY 

In this chapter, we discuss the most interesting discoveries 

so far concerning the stochastic Lanchester square-law attrition 

process:  the role of the Lanahester-square  force  ratio 

•VbBo 

as a measure of equality and inequality of forces.  As noted in 

the Proposition, when the corresponding quantity 

cnr(0)
2 

r = -1 2 
c2b(0)

d 

in the deterministic model (1) is equal to 1, the two forces 

are "equal" in the sense that neither annihilates the other 

within a finite period of time. 

This observation leads one to inquire whether the quantity 

f plays an analogous role in the stochastic model.  To begin, 

one must decide upon appropriate criteria for equality of forces. 

It was observed in Table 2 that for parameters and initial condi- 

tions satisfying f=l, the two forces had nearly equal expected 

fractions of survivors at three fixed times.  These fractions give 

one measure of force equality.  Another measure is equal .probabil- 

ity of each sidefs annihilating the other, a criterion for which 

we have the sample results of Table 4.  (Similar results hold 

for other cases; we refer the reader also to the discussion 

below. ) 

15 



Table 4.  COMPARISON OF SQUARE-LAW AND LINEAR-LAW FORCE EQUALITY 

Bo V eb er Pb ?r P{Blue Wins} 

Fractions 
Surviving 

Blue Red 

50 

50 

75 

75 

1 

1 

0.444 

0.67 

0.5 

0.5 

0.5 

0.5 

0.5 

0.0 

0.203 

0.0 

0.196 

0.573 

The most important conclusion obtained so far concerns the 

role of the ratio f of Equation (15) in the following situation: 

we seek the probability that one side reduces the other to 50 

percent of its original strength before it is itself so reduced, 

as a function of the Lanchester-square force ratio f.  Table 5 

gives the results of several simulations run in the process of 

investigating this problem.  Here p. ■ p  = 0.5, and the proba- 
bility being computed by the Monte Carlo simulations is 

p = p(1'J){Bt<0.5BQ before Rt<0.5RQ} 

= P(1,J){Bt<0.5j  before Rt<0.5i) . 

Each tabulated value is computed on the basis of 50 realizations, 

The results are rather surprising.  To a large extent, the 

probability p of Red's winning is a function only of the 

Lanchester-square force ratio f and not of the exact values of 

the parameters BQ, RQ, efe, er, pfe, and pr-  Of course, only 

fairly limited ranges of the values of the parameters have been 

investigated.  As the numerical scale of the combat (i.e., the 

initial force levels B0 and RQ) increases, the graph of the 

function p = p(f) (as depicted in Figure 3) becomes steeper and 

nonconstant (i.e., different from 0 and 1) over a smaller range 

of values of f.  In the limit, as BQ = RQ - °°, the function p 

would become 
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Table 5.  PROBABILITY OF WIN AS A FUNCTION OF 
FORCE RATIO (Equal Breakpoints) 

^ 
M KVJ O CVJ o «/> c c£ CO c 

CVJ o CVJ o 'f— b -Q •r- 
oc CO 3 °- o. 2 K. JO k rx o. Q. -o Q) 0) -o ft. -O 0) 0) 
<D O) CtL II oc k Bo er eb 

II 
**- O. R° 

Bo er eb «4- Q- 

50 50 1 1 0.56 100 150 1 0.445 0 
50 50 2 2 0.98 100 150 2 0.89 0.26 
50 50 1 .5 1 .5 0.94 100 150 2.25 1 0.46 
50 50 1 .25 1 .25 0.8 100 150 2.5 1.11 0.72 
50 50 1.1 1 .1 0.74 100 150 3 1 .33 0.94 
50 50 1 .05 1 .05 0.54 100 150 4 «1 1.78 1 
50 50 3 3 1 200 200 0.75 0.75 0 
50 100 1 0.25 0 200 200 0.80 0.80 0.08 
50 100 2 0.5 0 200 200 0.85 0.85 0.18 
50 100 3 0.75 0.12 200 200 0.90 0.90 0.25 
50 100 3.5 0.875 0.38 200 200 0.95 0.95 0.34 
50 100 4 1 0.54 200 200 1.00 1.00 0.51 
50 100 4.5 1 .125 0.68 200 200 1.05 1 .05 0.68 
50 100 5 1 .25 0.88 200 200 1.10 1.10 0.79 
50 100 5.5 1 .375 0.88 200 200 1.15 1 .15 0.8 
50 100 7 1 .75 1 200 

200 
200 
200 

1.20 
1.25 

1 .20 
1 .25 

0.87 
0.91 

50 150 1 0.111 0 
50 150 2 0.222 0 500 500 0.75 0.75 0 
50 150 3 0.333 0 500 500 0.80 0.80 0 
50 150 4 0.444 0 500 500 0.85 0.85 0.04 
50 150 5 0.555 0 500 500 0.90 0.90 0.11 
50 150 6 0.666 0.06 500 500 0.95 0.95 0.26 

50 150 7 0.777 0.14 500 500 1.00 1 .00 0.53 

50 150 8 0.888 0.3 500 500 1.05 1 .05 0.73 

50 150 9 1 0.5 500 500 1.10 1.10 0.88 

50 150 10 1 .111 0.7 500| 500 1.15 1 .15 0.96 

50 150 11 1 .222 0.84 : 
50 150 12 1 .333 0.92 
50 150 13 1 .444 0.92 
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Figure 3.  GRAPHICAL PRESENTATION OF TABLE 5 
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1° If  f  <   1/2   ; 
p(f) = Jo.5 if f -   1/2   ; 

1 1 if  f   >   1/2   . 

For the cases shown in Figure 3, nearly all the increase In 

p as a function of increasing f is concentrated between the 

'values f = 0.75 and f • 1.33 » 1/(0.75).  In this range, improve- 

ments in either quantity (the force strengths BQ and R ) or 

quality (the effectiveness parameters eb, e , p , p ) lead to 

significant improvements in p—the former more so than the 

latter.  In other ranges, changes in quality or quantity lead 

to rather small changes in p.  These conclusions are of con- 

siderable interest in relation to force planning for situations 

believed to be described by the stochastic Lanchester square- 

law attrition process—particularly with respect to quality- 

quantity trade-offs. 

An interesting consequence of these results concerns the 

"force ratio" necessary to ensure a reasonable probability of 

defeating the other side.  Let us consider the case of forces 

with equal quality.  It is frequently asserted that, in this 

case, a numerical superiority of 3 to 1 is necessary for vic- 

tory.  In terms cf the Lanchester-square force ratio f, a 3:1 

numerical superiority corresponds to f = 9.  But the results of 

Figure 3 indicate that f = 1.25 gives 0.9 probability of victory 

for force levels greater than 200; and this probability corre- 

sponds to a numerical force ratio of 1.12, which is only a 

very slight numerical superiority!  Clearly, this result has 

rather significant implications concerning force planning and 

procurement.  Alternatively, It has significant implications 

concerning the applicability of Lanchester-type attrition models. 

A similar exercise was carried out using an asymmetric 

termination rule.  Red (the attacker) loses if surviving Red 

strength falls below 79 percent of initial Red strength, while 

Blue (the defender) is defeated if surviving Blue strength 
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becomes less than 67 percent of initial Blue strength.  These 

numbers (taken from the ATLAS combat model) are intended to 

represent the differing capabilities of attacker and defender 

to sustain and absorb casualties. The results of this investi- 

gation are shown in Table 6 and are summarized graphically in 

Figure 4.  In this case both kill probabilities are 0.5. 

Therefore, 

e Rj: 

ebB0 

The output is the probability that the attacker wins.  (The 

comments made for the case of symmetric breakpoints are qualita- 

tively applicable in this case as well.) 

Thus, to achieve 80-percent certainty of victory, the 

attacker requires a Lanchester-square force ratio of approxi- 

mately 2.  In the case of equal-quality forces, this probability 

corresponds to a numerical superiority of 1.4l to 1, which is 

still much less than that usually thought to be required.  For 

higher numbers of forces, the necessary numerical superiority 

is less.  If Blue (defending) forces are 1.5 times as effective 

as Red forces, then the required numerical superiority is only 

1.7—still considerably less than the frequently mentioned 

factor of 3-  Again, the implications on force planning and 

expenditure levels (or on attrition modeling) are considerable. 

An interesting problem is to find f* such that 

p(f*) ■ 1/2 

(i.e., each side is equally likely to win).  From the data, it 

appears that f* is possibly independent of the absolute parame- 

ter levels and equal (approximately) to 1.44.  We conjecture 

that it is in fact true that f* is the same for all parameter 

levels and is therefore a function only of the breakpoints 0.79 

and 0.67.  We note that 
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Table 6.  PROBABILITY OF WIN AS A FUNCTION OF FORCE 
RATIO (Unequal Breakpoints) 

Bo Ro eb er f P(Attacker Wins) 

50 • 50 1 .0 1 .0 0.16 
50 50 1.2 1.2 0.25 
50 50 1.4 1.4 0.45 
50 50 1.6 1.6 0.58 
50 50 1 .8 1.8 0.81 

50 75 0.1 0.225 0 
50 75 0.2 0.45 0 
50 75 0.3 0.675 0.01 
50 75 0.4 0.9 0.05 
50 75 0.5 1 .125 0.2 
50 75 0.6 1 .35 0.48 
50 75 0.7 1.575 0.58 
50 75 0.8 1 .8 0.69 
50 75 0.9 2.025 0.85 

50 100 0.1 0.4 0 
50 100 0.2 0.8 0.02 
50 100 0.3 1 .2 0.29 
50 100 0.4 1.6 0.63 
50 100 0.5 2.0 0.8 
50 100 0.6 2.4 0.9 
50 100 0.7 2.8 0.98 
50 100 0.8 3.6 0.99 

50 150 0.1 0.9 0.03 
50 150 0.11 0.99 0.05 
50 150 0.12 1 .08 0.12 
50 150 0.13 1.17 0.19 
50 150 0.14 1.26 0.34 
50 150 0.15 1 .35 0.39 
50 150 0.16 1 .44 0.45 
50 150 0.17 1 .53 0.55 
50 150 0.18 1 .62 0.63 
50 150 0.19 1 .71 0.61 
50 150 0.2 1.8 0.71 

100 100 1 .0 1 .0 0.01 
100 • 100 1 .1 1 .1 0.19 
100 100 1 .2 1 .2 0.23 
100 100 1 .3 1.3 0.32 
100 100 1 .4 1.4 0.4 
100 100 1 .5 1 .5 0.55 

100 100 1 .6 1.6 0.62 
100 100 1 .7 1 .7 0.72 

100 100 1 .8 1.8 0.73 
100 100 1.9 1 .9 0.83 
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Figure 4.  GRAPHICAL PRESENTATION OF TABLE 6 
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fO.79^2 _ T on . 

whether this is purely coincidental we plan to explore further 

in future investigations.  The value of f* is, of course, of 

considerable practical interest. 

We conclude with some representative probability distribu- 

tions of the terminal state of the process, which appear in 

Figures 5-8. 

In Figure 5, we have data when both breakpoints are 0.5 

and the forces are equal numerically and in quality at the 

beginning of the engagement.  It is clear that the winner does 

not win by very much, having (on the average) about 62 percent 

of his initial forces left when R - B = 100 and 67 percent 

when RQ = BQ = 200.  For RQ = BQ = 100, the most likely values 

of surviving strength are those nearest 50 percent (i.e., the 

narrowest of victories).  However, when R0 = B = 200, the 

most likely surviving strength is about 60 percent. 

Figure 6 contains data with breakpoints of 0.5, RQ ■ BQ = 

200, and force qualities chosen so that the Lanchester-square 

force ratio 

.. r^r 0 
p 

ebpbB§ 

is equal to 1.1. In this case, the probability of Red's winning 

is about 0.75 and the most likely fraction of survivors is still 

about 60 percent. The expected fraction of Blue survivors— 

given that Blue wins—is, on the other hand, much closer to 0.5. 

In this case, Blue wins only by small margins, while Red can win 

by more substantial margins—but never really overwhelmingly. 

Figures 7 and 8 have the Red breakpoint equal to 0.79 and 

Blue breakpoint equal to 0.67; in both cases, RQ = BQ = 100. 

For Figure 7, force qualities are chosen so that f = 1 and 
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Figure 6.  PROBABILITY DISTRIBUTION OF NUMBER OF SURVIVORS 
(Force Ratio =1.1) 
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Figure 7.  PROBABILITY DISTRIBUTION OF NUMBER OF SURVIVORS 
(Unequal Breakpoints and Force Ratio = 1) 

SURVIVORS WHEN VICTOR 

Figure 8.  PROBABILITY DISTRIBUTION OF NUMBER OF SURVIVORS 
(Unequal Breakpoints and Force Ratio ■ 1.55) 
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Blue wins with probability O.87—with expected value and most 

likely fraction of survivors both approximately 0.8.  Recalling 

that Red need only be reduced to 0.79 of original Red strength, 

we observe that here again the victories are hardly overwhelming. 

Indeed, half the time when Blue "wins," it is with fewer survi- 

•vors (numerically) than Red.  When Red wins, it is essentially 

only by its incurring nearly all its allowable losses. 

In Figure 8, force qualities are chosen so that f = 1.55— 

which (in view of Figure 4) makes the forces nearly equal, in 

the sense of being equally likely to win.  Here Red's expected 

fraction of survivors, given a win, increases; and Blue's, 

decreases (relative to Figure 7), as one would expect. 

A general conclusion to be drawn is that, even when one 

side is rather certain to win, the margin of victory is not 

(on the average) overwhelming. 
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